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Summary

The ability to process sequential information has always been considered as one
of the most important features of biological and artificial intelligence systems.
Although the investigation of learning and memory has a long history, little is
known about possible dynamic principles of learning and remembering multiple
events and their time sequence by neuronal systems. Here we propose a model based
on results from the theory of nonlinear dynamics in neuroscience, in particular the
concept of Winnerless Competition (WLC), which is an adequate candidate for
sequential spatial memory. The essence of this idea is that sequential memory is
encoded in a high-dimensional dynamical system which shows complex heteroclinic
orbits that connect a sequence of saddle points. Each saddle point represents an
event or pattern to be remembered. The existence and global stability of such a
heteroclinic skeleton can be proven given the presence of asymmetric inhibitory
connections. These connections are inevitably shaped by sensory inputs which
sense the environment. In conclusion we will further support the plausibility of this
model by showing its multifractality properties and how those can be connected to
optimal search strategies.
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Chapter 1

Spatial Navigation

Before we begin to illustrate our work, it is necessary to introduce some concepts
that are radical to experimental testing in animal behavior. In the case of spatial
navigation, we may identify several cognitive processes as important. First of all,
navigation is not a pure process, but usually involves many different cognitive
processes. These processes are both dynamic and multisensory, depending on
the environment in which we move around. In the process of moving, we can
consider various forms of information, which may lead to different strategies, and
ultimately useful for finding a way to a specific destination. The input information
is properly multisensory: visual, but also proprioceptive, somatosensory, vestibular
and auditory. All of this information can - in combination or independently - help
to extract information about the environment, the location of the target, and our
own location. Navigation can also be seen as a dynamic process: when navigating,
we obtain knowledge about the environment and store this information in memory
so that it can be retrieved later for other purposes.

While observing animals moving, a physicist’s perspective could primarily be
the one of designing a random-walk like framework with the purpose of explaining
the exploratory behaviour. It is indeed the case of optimal search strategies, which
are going to be discussed in detail later on. This will be a qualitative and external
point of view, which is very accurate in many cases. On the other hand, we can
try to design a framework that involves internal representations of sensory stimuli,
and learns to match these sensory inputs to a set of possible actions, possibly by
generating behaviors that are in some way optimal for a specific exploratory task.
Before entering the realm of dynamical systems and neuronal circuits, we will try
to depict the experimental problem.
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Spatial Navigation

1.1 Animal Tracking
In neuroscience experiments quantifying behavioral traits is essential . Videog-
raphy provides an easy way to observe and record animal behavior in different
environments, but extracting specific aspects of behavior for further analysis can
be very time-consuming, since there would be a significant amount of manual work.
For example, in motion control trials, reflective markers on people or animals are
used to help computer vision based tracking, with a few drawbacks: the markings
are invasive, and the quantity and location of the markers has be determined a
priori. Here, we will go through two different tools that can help experimenters
in labelling animals’ body parts. In the first case, computer vision techniques are
used to handcraft features, while in the second case deep learning architectures are
exploited to guarantee better accuracy and flexibility.

1.1.1 Fish Trajectories - Vistrack 1

In our experiment, we consider a particular family of fish: Weakly Electric Fish
(WEF). WEF species have the peculiarity of possessing a sort of sixth sense which
allow them to sense their immediate (up to 3 centimenters) surroundings - even in
the dark - through the generation of electric organ discharges (EODs). EODs time
series can vary due to external conditions - sensory stimuli - or even self-movements.
Given that the electric behavior of these fish can be perturbed by uncontrolled
external sources which can generate different kinds of stimuli such as vibration,
sound, electricity, and lights, it is of crucial importance to design a controlled
environment through a very precise disposition of the experimental setup. Special
precautions must be taken to block or attenuate external sensory stimuli during a
long-term observation of free-swimming WEF (for an overview of the setup see [1]).
In this way, changes in EOD rate and movement trajectories can be specifically
attributed to stimuli presented by the experimenter.

The setup in [1] is suitable for video recording in the dark, through infrared
cameras. After that, it is necessary to employ an animal tracking software, which
can be either ready-to-use, e.g. Ethovision, or user-programmable through, for
example MATLAB Image Processing Toolbox, In this case James Jun & colleagues
developed a MATLAB library, named Vistrack (see Footnote 1 for the code). A
video tracking software eventually needs a set of feature engineering operations
which are specifically targeted to the problem of choice and requires trials and
errors. At first, we need to perform a masking operation: a valid tracking area

1Vistrack code, here on Github: https://github.com/jamesjun/vistrack
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Spatial Navigation

needs to be defined by drawing a geometric shape to exclude the area outside. After
this, an animal’s shape needs to be isolated from the background by subtracting a
background image from an image containing the animal. The subtracted image
is converted into a binary format by applying an intensity threshold, such that
the centroid and the orientation axis can be computed from binary morphological
operations. In Gymnotiforms and Mormyrids, the species that we considered for
this series of experiments, the electroreceptors are mainly concentrated in the head
region. Thus the head position at any moment indicates a location of the highest
sensory acuity. The head and tail locations can be automatically determined by
applying the image rotation and bounding-box operations. The head and tail
ends could be distinguished from one another by manually defining them in the
first frame, and by keeping track of their locations from comparing two successive
frames.

Figure 1.1: Vistrack tracking GUI

Employing the Vistrack library leads to concrete results for quantifying the
learning process, in [2] more details are exhibited. For example, it is possible to
distinguish between early and late trials: early trials represents exploratory strategy
in a new and unknown environment, while late trials corresponds to trajectories
traced by the fish after having learned where the target -food- is. Here we limit
ourselves to some of these results, trajectory averaged statistics as in Figure 1.2
and trajectory reconstructions and density estimation as in Figure 1.3.

3



Spatial Navigation

Figure 1.2: Learning process’ metrics: left distance traveled from "home" to
"target" by the fish in early vs late trials; center time spent from "home" to
"target";right average speed in early vs late trials

Figure 1.3: Left Trajectories of 3 different fish for early vs late trials;right Spatial
density of trajectories averaged among different fish for early vs late trials

More details on the automated image tracking software are available in [1] and
we will not go too deep into this part here. We decided to introduce the procedure
in order to show how much feature engineering work there is by relying only on
custom computer vision approaches. With the deep learning revolution in 2012 and
the advent of GPUs, training deep neural networks in a reasonable time became
feasible. This opened the door for the employement of such models into a plethora
of real-world scenarios. In particular Convolutional Neural Networks (CNNs) have
been succesfully brought into play in object detection problems, and luckily for us
even in animal tracking, as we will see in the next subsection.

4



Spatial Navigation

1.1.2 Mouse Trajectories - DeepLabCut 2

Extracting the pose of animals can be made more efficient by employing Deep
Learning architectures. One of the main problems of using such models is the fact
that huge datasets - e.g. ImageNet [3]- are needed to let the deep neural network
learn useful features, which is something hard to obtain for a neuroscience laboratory.
In order to overcome this hurdle, Mackenzie Mathis’ laboratory employed transfer
learning techniques and designed a end-to-end model, DeepLabCut, for animal pose
estimation [4]. In [4], they showed how it is possible to train a Convolutional Neural
Network with only ∼ 200 images, with human-like accuracy. One of the secrets
for such a result is employing transfer learning: feature detectors of DeepLabCut
are based on deep neural networks which are pretrained on ImageNet, de-facto
learning low-level features from natural images statistics.

In order to get more precise labelling, we decided to employ DeepLabCut for
a set of data involving mice moving inside a maze. Here we will illustrate some
details of DeepLabCut’s architecture which result in better accuracy and reduced
manual labelling time with respect to Vistrack, which did not exploit machine
learning techniques.

A quick overview of the most peculiar components of the model: feature detec-
tors are variations of Deep Residual Networks (ResNet) [5], with readout layers
which predict the position of body parts, while the key ingredient for semantic
segmentation is the use of deconvolutional layers [6] (see Appendix for details).

The architecture in DeepLabCut is basically a variant of the original ResNet,
already trained on ImageNet for the deeper layers but instead of keeping the
readout layer at the output of the ResNet, they employed deconvolutional layers -
i.e. transposed convolutional layer, to be more precise - to up-sample the convolved
image and extract spatial probability densities for body parts. This probability
density corresponds to the evidence of having a specific body-part in that place.
To fine-tune the network for a particular task, its weights are trained on - manually
- labeled data, which consist of frames and the accompanying annotated body part
locations (see Figure 1.4).

The experiment we have considered is made up by a maze, with holes in the
ground: a specific hole might contain food. In this case, the mouse orients itself
by looking at the walls, which present different visual landmarks. The aim of this
task is understanding whether the mouse has the ability of going from "home" -

2DeepLabCut code here on Github: https://github.com/DeepLabCut/DeepLabCut
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Spatial Navigation

Figure 1.4: Deeplabcut procedure, taken from [4].

starting point - to "target" - where food is located, and improving the trajectory in
terms of time spent, by exploiting spatial landmarks.

In our case, employing DeepLabCut, after minimal preprocessing - i.e. masking
the maze - on considered videos (see Figure 1.5), significantly increased the accuracy
(up to ∼ 98%) of labelling body parts as well as reduced the time taken to manually
label many frames (significatly, ∼ 93%), with respect to Vistrack. Figure 1.6 shows
an example trajectory, with four tracked body parts.

In this first section we presented our experiments, and, in particular how data
in spatial navigation experiments look like. Building a model that explains this
data is much less trivial than we might expect. This thesis will try to lay down a
possible phenomenological model which is well grounded in nonlinear dynamics
theory. But first of all, as a physicist would do, we will take a look at a possible way
to explain spatial navigation in terms of optimal search strategies by unleashing
statistical mechanics considerations.

1.2 Optimal Search Strategies
Every action we take is, in some way, the result of the invisible hand of evolution.
In this terms, what would be the best statistical strategy to adopt in order to search
for randomly located target sites? A forager - our agent - can show flight lengths
with a characteristic scale, e.g. Gaussian, with well defined momenta. However

6



Spatial Navigation

Figure 1.5: Preprocessing videos by imposing a mask around the maze. I have
employed the OpenCV library in Python for these simple tasks.

Figure 1.6: An example of trajectory with four tracked body parts. Left a frame
of the original video, with mask applied; right tracked trajectory at the end of the
video

in experiments which consider different animals, from albatrosses to fish, most of
the time long-tailed power law distributions are observed for flight lengths and
flight times [7] [8]. In our specific case, we consider an electric fish which moves
around in a dark almost 2-D maze by exploiting its electric sense which can make
it perceive its surrounding for ∼ 3 cm away from its body surface - this is a result
of evolution, since this fish’ habitat mainly consists of muddy water its eyes would
not be much effective. In [7], a model which can detects target sites only in its
vicinity is proposed. More specifically, it is possible to study how the efficiency

7



Spatial Navigation

of random searches depends on the underlying distribution. Levy flights can be
shown to be the optimal strategy whenever target sites are sparse, random and
non-destructive, i.e. they can be visited any number of times.

Levy flights have a characteristic distribution function with respect to flight
length lj:

P (lj) ∼ l−µj (1.1)

where 1 < µ ≤ 3. The central limit theorem states that for µ ≥ 3 we get a
Gaussian distribution, while for µ ≤ 1 we get a probability distribution which cannot
be normalized [9]. The approach will be to find the optimal value of parameter
µ = µopt for the search process. A Levy distribution is in general advantageous,
whenever target sites are sparsely and randomly distributed, irrespective of the
value of µ, because the probability to return to a previously visited site is smaller
with respect to Gaussian distribution, i.e. with a fixed number of steps, comparing
Gaussian random walks and Levy walks will show that, in the second case we
explore more space (see Figure 1.7).

Figure 1.7: Python simulation for Gaussian Random Walks (left) vs Levy Walks
(right), with the same Ns = 1000, i.e. number of steps.

It is possible to produce an idealized model where contributions due to learning
processes are minimized, i.e. it corresponds to early trials of our fish experiment.

8



Spatial Navigation

Moreover, we assume that our idealized animal moves as follows (see Figure 1.8):

• A direct vision distance rv exists. If a target is closer than rv the animal
moves directly towards it. This is directly related to the fact that our fish can
sense its environment within given physiological limits.

• In any other case, the animal selects a direction at random - i.e. from a
uniform or Von Mises distribution - and samples a distance lj from (1.1). After
this it re-iterates the same procedure as long as it steps into a target.

Figure 1.8: Foraging strategy as in [7]: (a); (b)

On the other side, the target site can be of two different types: destructive or
non-destructive. In [7] they first solve the model analytically, by introducing the
mean free path λ between successive targets - in a 2-D space, λ ≡ (2rvρ)−1 where
ρ is the target area density, i.e. density of food sources. We can calculate the mean
flight distance as:

< l > '
∫ λ
rv
l1−µdl + λ

∫∞
λ l−µdl∫∞

rv
l−µdl

(1.2)

=
(
µ− 1
2− µ

)(
λ2−µ − r2−µ

v

r1−µ
v

)
+ λ2−µ

r1−µ
v

(1.3)
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which is an approximate calculation because we assumed that the distances
between successive sites are all equal to λ. We also impose a finite cutoff λ on the
probability distribution which leads to a truncated Levy distribution.

The effectiveness of a search strategy can be envisioned by defining the search
efficiency function η(µ):

η = 1
N < l >

(1.4)

where N is the average number of flight taken between successive targets.
Finding a maximum of η will lead to the optimal value of µ. By considering the
case of destructive foraging, the resultant mean number of flights Nd taken to travel
an average distance of λ between two successive targets scales as - for 1 < µ ≤ 3 - :

Nd ∼
(
λ

rv

)µ−1

(1.5)

In the case of Brownian motion we would have had: Nd ∼ (λ/rv)2 - for µ ≥ 3. Let
us consider the case of non-destructive foraging now. In this case, previously visited
sites can be revisited so that the result that we have already found overestimates
the mean number of flights Nn in the non-destructive case.

Let r0 be the small distance between the last visited target site and the position
after the first subsequent flight. For the non-destructive - Brownian walker - case
Nn = (λ− r0)r0/(2D), the scaling is not quadratic anymore, but linear, because
the previous site, a small distance r0 away, can be revisited. Indeed for 1 < µ ≤ 3,
it follows:

Nn ∼
(
λ

rv

)µ−1
2

(1.6)

In [7], the case in which target sites are sparsely distributed - λ� rv - is studied.
By substituting (1.3) and (1.5) into (1.4), for non-destructive foraging the efficiency
η has no maximum. On the other side, for non-destructive foraging if λ� rv, then
Nd � Nn, and by substituting into (1.4) and differentiating with respect to µ we

10
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get a maximum for η at:

µopt = 2− 1
ln2 (λ/rv)

(1.7)

This basically means that whenever is not possible to have a priori knowledge
about the distribution of target sites, an optimal strategy for non-destructive
foraging is to choose µopt = 2 when λ/rv � 1.

Furthermore, equations (1.5) and (1.6) describe the correct scaling properties
even in the presence of short-range correlations in the directions and lengths of the
flights. Short-range correlations can alter the variance of the distribution P (l), but
cannot change µ, so that this result remain valid. Hence, learning and short-term
memory effects become unimportant in the long-time, long-distance limit. Last but
not least, a finite λ ensures that the longest flights are not energetically impossible.

We have nestled the problem of spatial navigation into the framework of optimal
search strategies, which is purely based on behavior and external characteristics
of the system which processes this information, i.e. the brain. The aim of this
thesis is to sketch a phenomenological model which takes into account neuronal
dynamics, and specifically tries to connect the Levy walk exploration strategy to
spiking neurons from first principles of nonlinear dynamical systems. In chapter 2
we introduce the main character of this tale, inhibition.

11



Chapter 2

Inhibitory Synapses

Our daily life is a sequence of multiple decisions. Should I continue after a M.Sc.
and get a PhD or start working? Should I say "Hello" to the person I see on the
other side of the street - in these days, it would presumably be the other side of
the screen - or move on? Should I eat a slice of cake or an apple? Some are, of
course, choices of minor relevance, but others could massively condition the course
of our life.

Mathematically, decisions are more easily framed in the context of games. Here,
we are going to borrow, implicitly, much of the terminology from game theory. We
are going to contextualize the concept of competition and competitive dynamics,
from a microscopic - single neuron - perspective. And we will try to understand
how to scale it up, in order to make a suitable framework for decision making. The
essence of this treatment lies in the concept of inhibition, where the actors are
inhibitory synapses.

The role of inhibition is central in information processing tasks: it is the basis
for the neural selection mechanism which decides whether a population of neurons
is selected for engagement. Such a rule for selection implies some competition,
generally speaking. The competitive behaviour of neuronal systems has been
investigated in a plethora of works, starting from [10], [11]. We will show how
inhibition effects shape this competition among neurons.

More specifically, we are going to explore the effects of lateral inhibition and
self-inhibition on the membrane dynamics. A notable finding is that by combining
the two, as we will show later on, we can extract a control parameter which basically
governs two qualitatively different types of behavior. An equal strength of lateral
and self-inhibition leads a network of neurons to the well-known Winner-Takes-All
(WTA) behaviour. If, on the other side, the lateral inhibition is weaker with respect

12
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to the self-inhibition, we will see the Winners-Share-All (WSA) behaviour: only a
certain number of neurons - usually more than one - will be activated in the steady
state.

2.1 Winner-Takes-All (WTA)
Here, by following the rate coding paradigm [12], we consider twomutually inhibitory
neurons represented by their firing rate:τ İ1 = −I1 + S(k1 − αI2)

τ İ2 = −I2 + S(k2 − αI1)
(2.1)

Figure 2.1: Representation of two mutually inhibitory neurons

where S can be any sigmoid function, in this case we consider, for example, the
Naka-Rushton potential [13]

S(kx− θ) =


M(kx−θ)2

σ2+(kx−θ)2 if kx− θ ≥ 0
0 if kx− θ < 0

(2.2)

In this "network", one neuron will eventually prevail, de facto remaining the only
one active. We also have an external stimulus k, which we take to be constant, for
the sake of simplicity. Here α represents the weight of the inhibitory connection.

Thus, a specific value of I1 will eventually decide whether I2 is active or inactive
and vice-versa. By inspecting, for example, S(k1−αI2), if I2 >

k1
α
then S(k1−αI2) =

0, which leads to: τ İ1 = −I1

τ İ2 = −I2 + S(k2 − αI1)
(2.3)

At equilibrium we have I∗1 = 0 and I∗2 = S(k2), and vice-versa by switching
subscripts. In fact, we can spot two stable fixed points:
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I∗1 = 0
I∗2 = S(k2)

I∗1 = S(k1)
I∗2 = 0

This is the essence of the Winner-Takes-All behaviour: only one neuron is active
and wins the competition. For the symmetry of the system, there might exist
an unstable fixed point, somewhere in the middle, which separates the basins of
attraction.

By drawing the phase portrait as in Figure 2.2, we can have a visual confirmation
of our intuition.

Figure 2.2: Left: quiver plot: phase space of the system for M = 100, k1 = k2 =
120, α1 = α2 = 3, σ = 120; right: phase portrait for different initial conditions,
same value of parameters.

2.2 Competition in Neuronal Models
We have started this chapter by talking about the intimate relation between
competition and neuronal dynamics: here we unveil a formal derivation, firstly
investigated by T. Fukai & S. Tanaka in [14], which determines, in mathematical
terms, the profound connection that we have previously anticipated.

Let’s consider a system of N neurons, in which each of its elements is character-
ized by the following two equations:τ u̇i(t) = −λui(t) + Ii(t)

zi = f(ui − θ)
(2.4)

where ui represents the membrane potential, Ii the input current and zi the
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firing rate of the ith neuron, with i = 1, ..., N . Moreover, Ii(t) can be decomposed
into three different elements:

Ii(t) = γ +Wi −
∑
j

Vijzj (2.5)

where γ is a scalar value, representing the background activity, Wi is the
neuron specific sensory stimulus and Vij represents the strength of lateral inhibition
connections: their role will be crystal clear while exploring the features of this
system.

f is indeed a nonlinear function, usually a sigmoid, as we have anticipated in
the previous subsection - i.e. the Naka-Rushton potential. In this case we assume
f to be the logistic function:

f(x) = f0

1 + e−βx
(2.6)

where f0 represents the maximum value, i.e. the maximum biological activity.
Now, the dynamics of the firing rate would be:

żi = df(ui(t)− θ)
dt

= −f0(−βe−β(ui−θ))
(1 + e−β(ui−θ))2 u̇i

= βzie
−β(ui−θ)

1 + e−β(ui−θ) (−λui + Ii(t)) (2.7)

Now, by considering (2.6), we can write :

e−β(ui−θ) = f0

zi
− 1

By substituting this expression into (2.7) we get:

żi = βzi(f0 − zi)
f0

(
− λθ + λ

β
ln
(f0 − zi

zi

)
+ Ii(t)

)

By expliciting Ii(t):

żi = βzi(f0 − zi)
f0

(
γ − λθ + λ

β
ln
(f0 − zi

zi

)
+Wi −

∑
j

Vijzj

)
15
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It follows that, if zi � f0, i.e. if the firing rate is always much smaller than
the maximum value f0, we have f0−zi

zi
' 1 and by rescaling as β(γ − λθ)t → t,

Wi

(γ−λθ) → Wi and Vij
(γ−λθ) → Vij we get:

żi = zi

(
1 +Wi −

∑
j

Vijzj

)
+ λ

βf0(γ − λθ)zi(f0 − zi) ln
(
f0 − zi
zi

)
(2.8)

The second term on the right-hand side indicates that the nonlinear output
function has two asymptotes, i.e. positive values for zi � f0, negative values for
zi ' f0. In biological jargon, this term preserves the boundedness of the membrane
potential.

Given that we are considering a system with global inhibitory connections for
which we are not getting close to f0, we can ignore the negativity of that term
and substitute it with a positive constant ε. This replacement doesn’t change the
qualitative behaviour of the considered dynamics.

In the end we obtain a Lotka-Volterra type equation:

żi = zi

(
1 +Wi −

∑
j

Vijzj

)
+ ε (2.9)

What we have derived here is a quantitative link between neurons and competitive
behavior: a Lotka-Volterra equation for firing activity from the standard equation
for membrane dynamics.

2.3 Winners-Share-All (WSA)
Let’s consider a N neurons system of the same kind as in (2.10), which has both
self-inhibition and uniform lateral inhibition , so that matrix V is determined by:

Vii′ =
1 if i = i′

k if i /= i′
(2.10)

Here k represents the relative strength of the lateral inhibitory connections with
respect to the self-inhibitory ones. For mathematical simplicity, we assume k to be
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a constant, i.e. uniform lateral inhibition. This assumption take us from Eq. (2.9)
to:

żi = zi

(
1− zi − k

∑
j /=i

zj +Wi

)
+ ε (2.11)

Starting from Eq. (2.11) we will understand how k, as previously stated, can be
seen as a control parameter for this system. To different values of k, the system
in Eq (2.11) presents different behaviors. In particular, when k ≥ 1 the network
exhibits the WTA behavior, see for example [15].

There is another case, which shows intriguing properties, for 0 < k < 1 : namely,
the Winners-Share-All (WSA) behavior. The peculiarity of this case is that the
system admits more than one winner receiving inputs larger than some critical
value determined by the distribution of intensity of the inputs. In order to show
the direct link between inputs and this type of behavior, we will need to make a
few assumptions:

• ε ≥ 0, Wi > 0 ∀i

• ε satisfies mε � Wi ∀i ∈ M , with M = {1, 2, ...,m} being the winner set
and m its cardinality, i.e. the number of winners.

• Wi’s obey the following inequality with respect to their magnitudes:

W1 ≥ W2 ≥ W3 ≥ ... ≥ WN−1 ≥ WN ≥ 0

Firstly, let’s set ε = 0, while the case where ε /= 0 can be analyzed in a
perturbative manner. Given ε = 0 and 0 < k < 1, we would like to look for stable
fixed point solutions in Eq. (2.11), which yields to:

∑
j∈M Kijz

(M)
j = 1 +Wi if i ∈M

z
(M)
i = 0 if i /∈M

(2.12)

Where K is a m×m matrix:

K =


1 k . . k
k 1 .
. . .
. . k
k . . k 1


17
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Since k /= 1, K is not singular and thus invertible (K is a square matrix by
definition):

K−1 = 1
(k − 1)α


k − α k . . k
k k − α .
. . .
. . k
k . . k k − α



where α = mk + 1− k > 0. Now that we have K−1, we can solve the first Eq.
in (2.12), we thus get:

zi = mk − α
(k − 1)α + (k − α)Wi

(k − 1)α + (m− 1)k
(k − 1)α ·

1
m

∑
j /=i

Wj

which, by substituting mk = α + k − 1, gives us:

zi = 1
α

+ Wi

1− k + mk

(k − 1)α < W >M (2.13)

where < W >M= 1
m

∑
jWj is the average on the set of winners.

In this last equation, there is a key message, due to the second term on the right
hand side: the winners receiving larger inputs, acquire larger values of activity zi.

So far we have seen how competition between neurons, inhibitory synapses and
sensory stimuli, can shape the activity of neuronal networks. In particular, we
will continue to exploit the leitmotiv of competitive neurons in order to lay the
foundations for a nonlinear dynamics principle which guarantees the existence
of a well-defined structure in the phase space, which is ultimately essential for
reproducing real-world behavior in neuronal networks. In the next chapter, we will
talk about this principle, namely the Winnerless Competition principle and we will
try to understand its effects on neuronal dynamics.
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Chapter 3

Dynamical Principles

In the previous chapter, we have set the basis for building an information processing
framework: inhibition is the key player. Starting from inhibitory synapses, we
would like to establish a more grounded principle, based on nonlinear dynamics
theory, namely: the Winnerless Competition (WLC) principle.

Before starting to define the WLC principle, we would like to establish a
better context, in particular, we need to operate a significant shift: experimental
neuroscience is usually based on the implicit assumption that neural mechanisms
can be approximated by steady-state measurements of neuronal activity, which,
indeed, is not the case most of the times. On the other side of the coin, a state in
which no stable equilibrium is achieved, i.e. transient, might be envisioned as a
suitable description of neuronal networks behavior.

From a theoretical neuroscience perspective, the picture of assuming that behav-
ior can be modeled by steady-states corresponds to a specific information processing
framework which is well embodied by the Hopfield Network [16], where attractors
can be seen as minima of a energy function. We are not going to investigate this
architecture in detail, but we are going to highlight in a better way the concept of
"computing with attractors": given some input, a neural network will change its
activation patterns, - i.e. active neurons - until it reaches an attractor state, i.e it
settles into one pattern. It is important to underline a representative characteristic
of this kind of systems, which is the fact that a specific input is associated with
properties of the whole network in an individual attractor state.

At this point, we can summarise this first class of architectures by stating
that the emphasis has to be on stable attractors, where memories are intended as
their cognitive equivalents. There is another, less intuitive, idea that emphasizes
the role of transient dynamics. Since neuronal phenomena usually operate and
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change on short time scales, classical attractor states, e.g. fixed point or limit
cycles, cannot be reached most of the time, e.g. due to input changes. There is
experimental evidence [17], [18], [19] of the existence of deterministic dynamics that
reach classical attractor states without waiting for a long time. Lastly, attractor
dynamics do not express useful dynamics: they do not care about the path taken
to reach an attractor, but only about the end point, given some specific initial
conditions.

Transient dynamics, alternatively, can be the key to a new theoretical framework
mostly because they have two main features. Firstly, even though they cannot be
described by classical attractors, they are robust to noise and reliable for small
variations of the initial conditions; in this way, the succession of states visited by
the system is overall stable. Secondly, transients are input specific as shown in
[20], [21], [22] for odor representations, which means that they contain information
about what caused them. Transient dynamics with such properties are usually
expressed by systems with a large number of degrees of freedom but they can be
understood in the context of nonlinear dynamical systems.

In order to start our discussion, we inherited the previous picture of competitive
dynamics as the foundation for constructing this framework. Since we previously
showed that neuronal models can be eventually described by Lotka-Volterra type
equations, we decided to introduce the WLC principle with an example: the
May-Leonard system.

3.1 Competitive Lotka-Volterras
Competitive Lotka-Volterra equations are models of the population dynamics of
species competing for some common resource. They are related to the Lotka-
Volterra equations, also known as predator-prey equations, a pair of first-order
nonlinear differential equations, commonly used to model the dynamics of systems
in which two species interact. The populations evolve in time according to this
pair of equations: ẋ = αx− βxy

ẏ = δxy − γy
(3.1)

where:

• x is the number of preys;
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• y is the number of predators;

• α, β, γ, δ are interaction terms (positive real parameters).

If in this set of equations, the intrinsic population dynamics is exponential - i.e.
x = αx, for the competition equations, on the other hand, the logistic equation is
the basis. The logistic population model, in the ecology literature, takes the form:

ẋ = rx(1− x

K
) (3.2)

where r is the growth rate and K the so called carrying capacity, i.e. the
maximum population size that can be sustained in some specific environment.

This model can be further generalized to any number of species competing
against each other. By using the matrix formalism we can write:

ẋi = rixi(1−
N∑
j=1

αijxj) (3.3)

where we pulled the carrying capacity Ki term into the αij terms.

In the case where N = 3 (i.e. three competitors), the Lotka-Volterra equations
in 1.1, possess a special class of solutions. We anticipate here that this class of
solutions can be placed into the WLC framework, which is further explored in [23].
Generally speaking, we refer to this specific model as the May-Leonard system of
equations [24]:


ẋ = x(1− x− αy − βz)
ẏ = y(1− βx− y − αz)
ż = z(1− αx− βy − z)

(3.4)

Specifically, we made some assumptions in order to reduce the number of
parameters (i.e. 12 parameters) with respect to (3). (i) In particular we’ve firstly
made the symmetry assumption that r1 = r2 = r3 = r; (ii) secondly, with respect
to the competition, we’ve assumed that population y affects x as z affects y as x
affects z, so that α12 = α23 = α31 = α; (iii) similarly α21 = α32 = α13 = β.

We decided to rescale each population so that we have αii = 1 and also rescale t
so that we get r = 1.
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3.1.1 Steady States

For the sake of simplicity, we bring back (4) here:


ẋ = x(1− x− αy − βz)
ẏ = y(1− βx− y − αz)
ż = z(1− αx− βy − z)

The possible equilibrium solutions are the following (we are expressing them
as points in the 3-dimensional population space): the origin, (0,0,0) ; 3 single-
population solutions of the form (1,0,0); 3 two-population solutions of the form
(1− α, 1− β, 0)/(1− αβ) and the 3-species equilibrium (1,1,1)/(1 + α + β).

Specifically, for ri > 0 (in our case ri = 1) the 3-species equilibrium is stable if
and only if the eigenvalues of the following matrix:

1 α β
β 1 α
α β 1



have positive real parts. This matrix is, in fact, an example of a special matrix,
the so called circulant matrix, which has some peculiar properties, e.g. a general
formula for writing down its eigenvalues [25], so that we get:

λ1 = 1 + α + β

λ2,3 = 1− (α + β)/2± i(
√

3/2)(α− β)

In order to get the results for fixed points coordinates we have investigated the
linear stability of the May-Leonard system. Starting from:


x(1− x− αy − βz) = 0
y(1− βx− y − αz) = 0
z(1− αx− βy − z) = 0

(3.5)
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we immediately identify (0,0,0) as a fixed point. So that we now have to consider
: 

1− x− αy − βz = 0
1− βx− y − αz = 0
1− αx− βy − z = 0

(3.6)

Let’s look for the 3-species equilibrium (i.e. x /= 0, y /= 0, z /= 0).

By substitution, starting from x = 1− αy − βz, we get for the second equation:

0 = 1− β(1− αy− βz)− y− αz
= 1− β + αβy + β2z− y− αz
= 1− β + y(αβ − 1) + z(β2 − α)

which leads to

y = 1− β + (β2 − α)z
1− αβ (3.7)

Now we have to backpropagate for getting x, so that:

x = 1− α
(

1− β + (β2 − α)z
1− αβ

)

= 1− α(1− β)
1− αβ −

(
α(β2 − α)

1− αβ + β

)
z

Now we can substitute into the third May-Leonard equation, to get:

z = 1− α
1− α(1− β)

1− αβ −
(
α(β2 − α)

1− αβ + βz
)− β

1− β + (β2 − α)z
1− αβ



By grouping z’s coefficients:
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z

1− α
(
α(β2 − α)

1− αβ + β

)
+ β(β2 − α)

1− αβ

 = 1− α
(

1− α(1− β)
1− αβ

)
− β(1− β)

1− αβ

z
(
α3 + β3 − 3αβ + 1

1− αβ

)
= 1− αβ − α(1− αβ) + α2(1− β)

1− αβ

Which leads to:

z = α2 + β2 − αβ − α− β + 1
α3 + β3 − 3αβ + 1 (3.8)

It doesn’t resemble mathematical beauty at all, let’s try to simplify it. We can
start by renaming:

N = α2 + β2 − αβ − α− β + 1
D = α3 + β3 − 3αβ + 1

Let’s tessellate:

αN = α3 + αβ2 − α2β − α2 − αβ + α
βN = α2β + β3 − αβ2 − αβ − β2 + β

So that, by summing these two terms:

αN + βN = α3 + β3 − 2αβ − α2 − β2 + α + β

Let’s subtract it from D and see if we are far from finding a decomposition of
our initial fraction:

D− (αN + βN) = α2 + β2 − αβ − α− β + 1
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which is nothing but N itself, so that we have found:

D = N(α + β + 1)

�
This finding finally leads to:

z = 1
α + β + 1 (3.9)

In the end, by substituting back, the complete solution is:
x = 1

α+β+1
y = 1

α+β+1
z = 1

α+β+1

(3.10)

There are 6 more solutions, 3 single population and 3 two-population solutions.
To verify their existence, we can just set one or two variables to 0, in mathematical
terms calculations are more trivial with respect to the 3-species fixed point and we
get the previously mentioned results.

3.1.2 Linear Stability
Now it’s time to compute the Jacobian matrix, A:

Ai,j = ∂Fi
∂xj

=

1− 2x− αy− βz −αx −βx
−βy 1− βx− 2y− αz −αy
−αz −βz 1− αx− βy− 2z


(3.11)

By having the Jacobian matrix, we can inspect the linear stability of the
previously found fixed points, by solving det(A− λI), where I denotes the identity
matrix and det, the determinant. By substituting the fixed points coordinates we
get:

• For (x, y, z) = (0,0,0), we get λ1,2,3 = 1 > 0 thus an unstable point, as
expected;
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• For (x, y, z) = (1,0,0), we get λ1 = −1, λ2 = 1−β, λ3 = 1−α, which depends
on both α and β (for WLC to work it has to be a saddle point, see below) it
works similarly for (0,1,0) and (0,0,1);

• For (x, y, z) = (1− α, 1− β, 0)/(1− αβ), we get

λ1 = α2 + β2 − αβ − α− β + 1
1− αβ

λ2 = α + β − 2−
√
α2 + 4αβ3 − 8αβ2 + 2αβ + β2

1− αβ

λ3 = α + β − 2 +
√
α2 + 4αβ3 − 8αβ2 + 2αβ + β2

1− αβ

again, similar results for the other two (two-species) points.

• For (x, y, z) = (1,1,1)/(1 + α + β)), we get (see symbolic solver in Python)

λ1 = −1

λ2 = α−
√

3iα + β +
√

3iβ − 2
2α + 2β + 2

λ3 = α +
√

3iα + β −
√

3iβ − 2
2α + 2β + 2

In order to introduce the WLC principle, we are specifically interested in this
last case, where every population is still alive, i.e. every neuron is active. The
stability depends on the value of α and β. Let us select them to be 0 < α < 1 < β,
the motivation will be explained in detail in the next section. With these values
for α and β we are basically constraining the system to possess three different
saddle-points, which can be noted in the phase portrait of the system, i.e. the
right-side of Figure 3.1. Such a phase portrait corresponds to a sequential switching
among the activities of the three neurons, i.e. left-side of Figure 3.1: a behaviour
which embodies the essence of the competitive dynamics.

3.2 Winnerless Competition Principle
In the previous section, we had a quick glance at what are the key qualitative
characteristics of the Winnerless Competition Principle. Here we are going to
provide a more detailed and quantitatively grounded, in nonlinear dynamics theory,
description. Before starting though, it is worth underlining explicitly the main point
of this principle, which is basically the transformation of incoming spatial inputs
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Figure 3.1: Left: Activity of each population (i.e. in our framework, each neuron);
right: phase portrait for the May-Leonard system. Inspired by [24], [23], simulations
have been carried out in Julia, see code).

into temporal output based on the intrinsic switching dynamics of the neuronal
system. In the presence of sensorial stimuli, the sequence of the switching solely
depends on the incoming information. In particular, there is a fundamental question
that we are going to discuss below: how the WLC can be stable and what are the
conditions for such a robustness?

For the sake of clarity, let us bring back the May-Leonard system’s associated
matrix: 1 α β

β 1 α
α β 1



We have briefly mentioned that the stability of the system, in the case where
each population is alive, i.e. each neuron is active, depends on the values of α and
β. More generally, having α /= β, corresponds to a special case of nonsymmetric
inhibition. In fact, a detailed analysis is only possible for the case N = 3, as
explained in [26], [27] and [28]. When 0 < α < 1 < β, a peculiar structure, in the
phase space, exists, namely a heteroclinic contour, Figure 3.1 (right), that consists
of saddle points and a one-dimensional separatrices connecting them. It can be
proven that, in some regions of the phase space, such heteroclinic contour is a
global attractor. The most interesting property, as showed in [28] is that if α and
β depend on the sensory stimulus, i.e. a result of a learning procedure, the system
can generate different heteroclinic contours for different input stimuli.

Here we are interested in understanding whether a heteroclinic contour exist
and when it is stable. Heteroclinic contours are the geometrical image of the WLC
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behavior. As we will show, these orbits exist only in the nonsymmetric inhibition
case, when saddle points satisfy several conditions.

3.2.1 Existence and Stability of the Heteroclinic Contour
For the following treatment (see [23]) we consider the canonical Lotka-Volterra
model:

ȧi = ai

[
1−

(
ai +

N∑
i /=j

ρijaj
)]

(3.12)

A heteroclinic contour consists of a certain number of saddle equilibria, connected
by finitely many heteroclinic orbits.

We can indicate by A1 the following equilibrium point (1,0,0, ...,0), by A2 the
point (0,1, ...,0) and by AN the point (0,0, ...,1). For the sake of simplicity, we are
going to assume that there exist a heteroclinic orbit Γi,i+1 connecting the points Ai
with Ai+1, i = 1, ..., N and with AN+1 ≡ A1. The heteroclinic contour can serve as
an attracting set if every point Ai has only one unstable direction. Ai satisfies this
assumption if ρki > 1, where k /= i+ 1 and ρi+1,i < 1.

Now we can define the concept of intersection of hyperplanes:

P2i =
N⋂

j=1,j /=i,i+1
{aj = 0} (3.13)

which is a two-dimensional invariant manifold containing Ai and Ai+1 in such a
way that Ai is a saddle point on P2i and Ai+1 is a stable node on P2i. The system
(3.12) on P2i has the form: a

ȧi = ai[1− (ai + ρii+1ai+1)] (3.14)

ȧi+1 = ai+1[1− (ai+1 + ρi+1iai)] (3.15)

And, from the previous assumptions, we have ρii+1 > 1 and ρi+1i < 1. This fact
implies that there are no equilibrium points in the region where ai > 0, ai+1 > 0 and
since ȧi+1 < 0 if ρi+1i � 1 then we certainly have a heteroclinic connection between
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Ai and Ai+1 on the plane P2i. The specific case of N = 3 has been explicitly proven
in [25].

The point Ai on P2i is a stable node with Lyapunov Exponents λ1 = −1 and
λ2 = 1− ρii+1. By observing Lyapunov exponents, we can determine the leading
direction at Ai+1, in particular if λ1 > λ2 then the leading direction is parallel
to the ai+1-axis; while, on the other side, if λ1 < λ2 then the leading direction is
transversal to the ai+1-axis on P2i. By assuming that the last inequality holds, we
get ρii+1 < 2 which states that the majority of orbits go to Ai+1 by following a
direction l = (1,−ρi+1i/(2− ρii+1)) transversal to the ai+1-axis.

We can proceed by noting that the vector l on P2i can be embedded into a
hyperplane, namely Hi : {ai+2 = 0} as L = (0,0, ...,1,−ρi+1i/(2 − ρii+1), 0, ..., 0)
with 1 on the ith place. Now, we would like to understand whether the direction L
is the leading direction for the node Ai+1 on hyperplane Hi.

Sufficient conditions for this assumption can be extracted by noting that Ly-
panunov exponents at point Ai+1 of the system of equations (3.12) restricted to
Hi are 1− ρii+1, ...,1− ρi−1i+1,−1, 1− ρi+2i+1, ..., 1− ρNi+1, which are all negative
given previous constraints on ρ. In case ρki+1 > ρii+1 for k /= i, then 1− ρii+1 is
the Lyapunov exponent closest to zero and L is the leading direction at Ai+1 on
Hi. We are going to assume that ρki+1 > ρii+1 is satisfied even though this is not
a necessary condition for the validity of the next result, but it certainly makes
calculations easier.

It is time to exploit some results achieved in [29]: in particular it is possible to
write down, by recalling that Ai is a saddle point on P2i, a map from a transversal
to the stable separatrix into a transversal to the unstable separatrix along the
orbits going through a neighborhood of Ai. We can define a 2-D coordinate system
(ξ, η) such that:

ξ = cηνi (3.16)

where η is the deviation from the stable manifold, ξ is the deviation from the
unstable one and c is a constant. On the other side, νi is the so-called saddle value
[29], and is defined as:

νi = −1− ρii+1

1− ρi+1i
≡ ρii+1 − 1

1− ρi+1i
(3.17)
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The saddle value has a fundamental importance: if νi > 1, the map (3.16) is
a local contraction and Ai is a dissipative saddle; else, if νi < 1, (3.16) is a local
expansion.

Starting from the definition of saddle value, we can show how the contour
Γ = ⋃N

i=1 Γi ∪ Ai can be an attractor.

Theorem 1.[23] Assume that, as previously mentioned, ρki > 1 with k /= i+ 1,
ρi+1i < 1, ρii+1 < 2 and ρki+1 > ρii+1 with k /= i are satisfied and:

ν =
N∏
i=1

ρii+1 − 1
1− ρi+1i

> 1 (3.18)

(recall that i+ 1 = 1 if i = N). Then there is a neighborhood U of the contour
Γ such that for any initial condition a0 = (a0

1, ..., a
0
N) in U with a0

i > 0, one has
dist(a(t),Γ)→ 0 as t→∞, where a(t) is the orbit which passes by a0.

Proof of Theorem 1. As shown in [23], the proof is based on constructing
the Poincaré map along orbits in a neighborhood of the contour Γ. Consider the
stable (unstable) manifold W s

i (W u
i ) of the point Ai and Pi (Qi) as a point of the

heteroclinic orbit Γi−1 (Γi) in a neighborhood of Ai.

Let SPi (SQi) be a "portion" of a hyperplane, transversal to Γi−1 ( Γi) going
through Pi (Qi). In this way, a local map fi : SPi → SQi along orbits in a
neighborhood of Ai is well defined. A proper coordinate system [29] becomes:

ξi = ciη
νi
i , χi = ϕi(yi, ηi) (3.19)

where ηi ∈ R is a coordinate on SPi parallel to W u
i , y ∈ RN−2is a vector,

transversal to the ηi-axis on SPi , ξi is a coordinate on SQi , parallel to the leading
direction on W S

i at Ai, with the conditions:
∣∣∣∣∣∂ϕi∂yi

∣∣∣∣∣ ≤ c̄iη
βi
i ,

∣∣∣∣∣∂ϕi∂ηi

∣∣∣∣∣ ≤ c̄i|yi||ηi|βi−1 (3.20)

where c̄i > 0 is a constant and βi > νi.
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Figure 3.2: Local Map in the neighborhood of a saddle point (taken from [23])

Given that the heteroclinic orbit Γi joins point Qi and Pi+1, the global map Fi :
S̃Qi → SPi+1 along orbits, is well defined where S̃Qi ⊂ SQi is a small neighborhood
of the point Qi on SQi . This map is a diffeomorphism and has the form:

ηi+1 = ai1ξi + ai2ξi + o(ξ2
i )

yi+1 = bi0 + bi1ξi + bi2ξi + o(ξ2
i )

(3.21)

We should specify that the orbit Γi belongs to the intersection of invariant
hyperplanes {aj = 0}, j /= i, j /= i+ 1. Given that the hyperplane {ξi = 0} on SQi
is mapped by Fi into the hyperplane {ηi+1 = 0} on SPi+1 , this means that in (3.22),
ai2 = 0 and ai1 /= 0. This leads (3.22) to :

ηi+1 = ai1ξi + o(ξ2
i )

yi+1 = bi0 + bi1ξi + bi2ξi + o(ξ2
i )

(3.22)

Now we have all the ingredients to construct a Poincaré map F = SP1 → SP1 as
the superposition of maps fi, Fi, i.e. basically F = FN · fN · · · ·F2 · f2 · F1 · f1. The
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map Fi ◦ fi has the following form:ηi+1 = ai1ciη
νi
i + o(η2

i )
yi+1 = bi0 + bi1ciη

νi
i + bi2ϕi(yi, ηi) + ...

(3.23)

In the first order approximation, F along η-coordinates is independent of y-
coordinates. We can consider the 1-D approximation:ηi+1 = ai1ciη

νi
i i = 1, ..., N

ηN+1 := η̄1 ≡ F̃ (η1)
(3.24)

Provided that (3.18) is satisfied, we can see that map F̃ : η1 → η̄1 is a contraction.
It follows that η̄1 = Cην1 , where C is a constant. We can see how if ν > 1, then
∂η̄1/∂η1 < 1 if η1 is small enough, F̃ is a contraction and η1 = 0 is an attracting
fixed point.

Consider now the differential of Fi ◦ fi:

DFi ◦ fi =
(

aiciνiη
νi−1
i + ... 0 + ...

bi1ciνiη
νi−1
i + bi2

∂ϕi
∂ηi

+ ... ∂ϕi
∂yi

+ ...

)
(3.25)

because of this result (3.20):

||DFi ◦ fi|| ≤ Biη
νi−1
i (3.26)

where Bi is a constant. This last inequality leads to:

||DF ◦ f || ≤ B
N∏
i=1

ηνi−1
i (3.27)

with B = ∏N
i=1 Bi. We will estimate ∏N

i=1 η
νi−1
i by using (3.23):

N∏
i=1

ηνi−1
i = ηνN−1

N · ηνN−1−1
N−1 · · · ·ην2−1

2 · ην1−1
1

Let us consider first ην2−1
2 · ην1−1

1 , given that η2 = a1c1η
ν1
1 + ..., then:
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ην2−1
2 · ην1−1

1 = (a1c1)ν2−1 · (ην1
1 + ...)(ν2−1) · ην1−1

1 ≤ const · ην1ν2−1
1

Now, we can frame an inductive reasoning, so that for:

ην3−1
3 · ην2−1

2 · ην1−1
1 = (a2c2)ν3−1 · (ην2

2 + ...)ν3−1 · ην1−1
1

≤ const · ην3ν2−1
2 · ην1−1

1

= const · (a1c1)ν3ν2−1 · (ην1
1 + ...)ν3ν2−1 · ην1−1

1

≤ const · ην3ν2ν1−1
1

For the k-th step:

ηνk−1
k · · · ·ην2−1

2 · ην1−1
1 ≤ const · (a1c1η

ν1
1 + ...)νk...ν2−1 · ην1−1

1

≤ const · η
∏N

i=1 νi−1
1

Therefore we have:

N∏
i=1

ηνi−1
i ≤ C · ην−1

1 (3.28)

where C is constant. Finally we get:

||DF || ≤ BCην−1
1 (3.29)

which finally leads to our result: F is a contraction in a neighborhood of the
point (η1 = 0, y1 = 0), which corresponds to the contour Γ.

�

3.2.2 Birth of a Stable Limit Cycle
What happens if we impose a perturbation on our system?
Here we discuss about a direct corollary of Theorem 1 which point out the
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possibility of the birth of a stable limit cycle in system (3.12) when it is perturbed
in an appropriate way. Technically, such a perturbation should promote the
existence of an absorbing region and a fixed point inside the Poincaré map. We
can start from (3.12) and add a small perturbation:

ȧi = ai

[
1−

(
ai +

N∑
i /=j

ρijaj
)]

+ εΨi(a) (3.30)

where Ψi(a) is a smooth function. For small ε > 0, the system shows saddle
equilibrium points Aiε and separatrices Γiε.

Theorem 2.[23] Assume that conditions of Theorem 1 are satisfied,

ltε→0

(
N⋃
i=1

Γiε
)

= Γ (3.31)

where lt means topological limit. Assume also that at least one of the separatrices
Γiε is not a heteroclinic orbit. Then for sufficiently small ε > 0 the system (3.30)
has a stable limit cycle Lε in a neighborhood of Γ such that ltε→0Lε = Γ.

The proof of Theorem 2 can be done by constructing the Poincaré map, in a
similar fashion to the proof of Theorem 1. Condition (3.31) is both necessary and
sufficient for the existence of an absorbing region. The proof is done by employing
the so-called Annulus Principle as in ([27], [30], [29]), and we are going to omit
it here. One last consideration on the robustness of the system: the attractor of
a perturbed system (3.30) is located in a small neighborhood of the unperturbed
attractor.

In [23], numerical results for a six dimensional system (i = 1, ...,6) show how the
limit cycle in the vicinity of the former heteroclinic contour is a global attractor,
as in Figure 3.3. The system considered in [23] is of the following form:

ȧi = ai

[
1−

(
ai +

N=6∑
i /=j

ρijaj
)]

+ εaiai+3 (3.32)

where i+ 3 ≡ i− 3 if i > 3, with ε = 0.01. The connection matrix on the other
side is of the form:
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ρ =



1 0 5 0 0 1.5
1.5 1 0 2 0 0
0 1.5 1 0 5 0
0 0 1.5 1 0 2
5 0 0 1.5 1 0
0 2 0 0 1.5 1



Figure 3.3: 3D projection of the 6-dimensional system (taken from [23])

3.2.3 On the Capacity of WLC Networks
As we have previously stated, when the inhibitory connections are not symmetric,
i.e. ρij /= ρji, the system possesses heteroclinic orbits which consist of saddle points
and 1-dimensional separatrices connecting them. From Theorem 1, we know that
such heteroclinic orbits are indeed global attractors in phase space. The idea is
that, by slightly changing the sensory stimulus - i.e. the input - , another orbit
in the vicinity of the previous heteroclinic one becomes a global attractor. It is
possible to quantify the capacity C of such a network (as in [28] ), which basically
tells the number of different memories the network could encode.
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In order to estimate C, we assume that at least one heteroclinic orbit exist.
It is fairly simple to understand how from one heteroclinic orbit, we can build
many other from it by permuting the indices of ai and of the matrix ρ: there are
N ! permutations of the indices. Some of these permutations generate the same
heteroclinic orbit, e.g. with N = 6 as in the previous example: (1,2,3,4,5,6) and
(2,3,4,5,6,1) are equivalent. This leads to N cyclically equivalent permutations out
of a given permutation. Thus, the number of heteroclinic orbits involving all N
neurons is (N − 1)!, but we should note that there exist more heteroclinic orbits,
i.e. the ones associated with the N − 1, N − 2 ... 3 dimensional subspaces which
can be selected by "deleting" one saddle point at a time. The total number of these
possible heteroclinic orbits is the capacity C:

C =
N∑
k=3

(
N

k

)
(k − 1)! = N !

N∑
k=3

1
k(N − k)! (3.33)

We also know that:

N !
3

N−3∑
k=0

1
k! < C <

N !
N

N−3∑
k=0

1
k!

for large N , we get:(
1− 1

e(N − 2)!

)
<

C

e(N − 1)! <
N

3

(
1− 1

e(N − 2)!

)
(3.34)

which in the end leads to C ≈ e(N − 1)!.
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Chapter 4

Biological Plausibility

In principle, it should be possible to observe reproducible transient behavior in any
complex network with nonsymmetric connections. In this chapter we consider one
canonical model, namely the Hodgkin-Huxley (HH) spiking model. As we show
both rigorously and with computational models, a network made of HH neurons
exploits a Stable Heteroclinic Contour (SHC) in its phase space. One of the main
drawbacks of the HH neuron model is its computational complexity: even though
it is one of the most biologically plausible models, each HH neuron is described by
four equations. Furthermore by considering synapse dynamics in order to build a
network, the number of equations lifts up to six. What we are going to do is to
show that a HH neuron network can be reduced in terms of complexity by noting
that a neuronal rate model is equivalent with respect to bifurcations and phase
portrait. We demonstrate how to pull out this reduced rate model; its form is
significantly similar to the Fukai & Tanaka model, with minor differences. In this
way, we observe how competitive dynamics are embodied in the nature of neuronal
networks.

4.1 Hodgkin-Huxley Neuronal Model
In their paper in 1952 [31], Alan Hodgkin and Andrew Huxley described a model
with the aim of explaining the mechanism underlying the initiation and propagation
of action potentials in the squid giant axon. A few years later, in the 1963, they
received the Nobel prize in Physiology or Medicine for this work.

Given the relevance of this work and the fact that we are going to use this model
to establish the validity of a Lotka-Volterra-like reduced model which presents
WLC behavior, we decided to briefly present it here, mainly from a physicist’s
perspective. In this view, a neuron is basically an element that when excited with
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a sufficient amount of current, emits an action potential - or spike - i.e. a sharp
electrical potential across its cell membrane. Luckily, the neuronal cell membrane
can be modelled as an electric circuit (as in Figure 4.1), so that we can transpose
the problem into a physically sound one.

Hodgkin and Huxley distinguished among different types of ion currents [31]
while performing experiments on the giant axon: sodium, potassium and a leak
current, mainly composed by chloride ions. The flow of those ions is controlled by
specific voltage-dependent ion channels for sodium and potassium, while the leak
current takes into account other channel types which are not described explicitly.

Figure 4.1: A HH neuron can be modelled as a circuit

In this picture, the cell membrane separates the interior of the cell from the
extracellular liquid and in this way, acts as a capacitor. If an input current - which
can account as a sensory stimulus - Istim is injected, it may add a certain amount
of charge on the capacitor or either leak through the channels in the cell membrane.
Each channel is represented as a resistor, but usually, instead of talking about
resistances, the neuroscience community considers conductances. Each of the three
considered channels has its own conductance, gNa, gK , gL. In the original model,
gL is constant, while gNa and gK are not fixed and depend on whether the ion
channel is open or closed. Because of this ion transport through the cell membrane,
different ion concentrations between the inside and the outside arise, this generates
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a potential, i.e. the Nernst potential, which is represented by a battery in Figure 4.1.
Since the Nernst potential is different for each ion type, we define separate batteries
for sodium, potassium and leak, with voltages ENa, EK and EL respectively.

We can now translate this electrical circuit into mathematical equations. The
conservation of electric charge implies that the applied current Istim can be split
in two pieces: a capacitive current IC , which charges the capacitor C, and other
components Im which pass through the ion channels. This leads to:

Istim(t) = IC(t) +
∑
m

Im(t)

where the sum is over all the ion channels. From the definition of capacity we
can rewrite the charging current as IC = C · dV/dt. Hence:

C
dV

dt
= −

∑
m

Im(t) + Istim(t) (4.1)

where V in biological terms represents the voltage across the membrane. By
employing Ohm’s law we can explicit the leak current as IL = gL(V − EL), where
(VEL) is the voltage at the leak resistor. As a physicist you would expect to replicate
this procedure for the sodium as well as for the potassium channel. In fact the
mathematics are analogous but the exact Ohm’s law would not fit the experimental
data of the giant squid axon: the peculiarity of Hodgkin and Huxley’s work has
been to introduce additional gating variables m, n and h to model the probability
that a channel is open at a given moment in time. Variables m and h, combined
together, control sodium channels while n controls potassium channels. In this way
the sodium current would be INa = gNam

3h(V −ENa) while the potassium current
IK = gKn

4(V − EK). The sum of currents becomes:
∑
m

Im(t) = gNam
3h(V − ENa) + gKn

4(V − EK) + gL(V − EL) (4.2)

On the other side each of the three gating variables y(t) = {n(t),m(t), h(t)}
satisfies first-order kinetics:

dy

dt
= αy(V (t))

[
1− y(t)

]
− βy(V (t))y(t) (4.3)
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where αy(V ) and βy(V ) are nonlinear functions. For example, for n in our
simulation which results in Figure 4.2 we have:

αn(V ) = 0.1− 0.01V
e1−0.1V − 1 βn(V ) = 0.125

e0.125V (4.4)

These formulae are analogous for the other two gating variables.

Figure 4.2: top membrane potential V of a Hodgkin-Huxley neuron; middle input
current Istim, in this case it is constant; bottom gating variables dynamics.

In the end the Hodgkin-Huxley model is one of the most biologically plausible
neuron models, even though some caution is needed when trying to simulate a large
number of HH neurons on a computer, see 4.3 for a comparison with other models.
In the next section, we will show how, for our needs, it is possible to reduce the
HH model in a similar fashion to what Fukai & Tanaka achieved in their paper
[14] by keeping, at the same time, all the dynamical properties, e.g. bifurcations,
in the phase space. This then provides a stronger biophysical basis for the neuron
models used in our WLC analysis and its application to exploration in animals.
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Figure 4.3: Biological plausibility vs computational efficiency of different neuron
models taken from [32]

4.2 Hodgkin-Huxley Revisited

We would like to consider a minimal network which embodies all the necessary
requirements to show a WLC behavior, and on the other side, we are particularly
interested in the class of dynamical systems that describe typical motifs (building
blocks) of complex neural circuits: in order to satisfy these requirements we decided
to consider the most common neuronal circuit [33], made up by three coupled
inhibitory HH neurons.

For the first time in [34], a sequence of bifurcations that leads to the appearance
of an heteroclinic cycle has been observed in the high dimensional phase space of a
system of HH-neurons. In particular, the most impressive result, which we replicate
here, is the comparison between the bifurcation sequence from tonic activity to
burst generation in a network of three HH neurons and the sequence of bifurcations
of a time averaged rate model of the same network - i.e. Lotka-Volterra model,
which showed that these sequences are the same.

The network consists of three HH neurons (as in Figure 4.4) which are connected
by inhibitory synapses - i.e. neurons are nodes, synapses are links in our network.
For each individual neuron (4.1) holds but we introduce another term, a synaptic
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current Isyn so that we get:

C
dVi
dt

= +Istim(t)− INa(t)− IK(t)− IL(t)− Isyn(t) (4.5)

Figure 4.4: Three Hodgkin Huxley neurons, connected by inhibitory synapses
which constitute our motif of choice. Synapses strength are symmetric, e.g.
(Isyn,12 ≡ Isyn,21)

The synaptic current onto neuron j is the linear sum of all incoming synapses,
Isyn,j = ∑

i Isyn,ji where individual currents are modelled as in [35], [36]:


Isyn,ji = gjiSi(Vj − Vrev)

τ dSi
dt

= (Ri − κSi)Smax−SiSmax

τ dRi
dt

= Θ(Vi − Vth)−Ri

(4.6)

where Ri is a measure of the amount of neurotransmitter released presynaptically,
Si is the fraction of postsynaptically bound neurotransmitter, Vth is the threshold
potential for neurotransmitter release, τ is the synaptic time scale, Smax is the
maximal fraction of postsynaptically bound transmitter, κ is the relative rate of
transmitter binding and unbinding and Θ is the Heaviside function.
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We will now reduce this model to a rate model, which is indeed very similar
to the Fukai & Tanaka model. The presynaptic release of neurotransmitter, Ri

is driven by spikes. In particular, we will focus on xi, the spiking rate of neuron
i. We can calculate the average release ri of the presynaptic spike train by a rate
equation, which takes the form:

τ
dri
dt

= f(xi)− ri (4.7)

where f is a function of the firing rate of neuron i. It is possible to determine f
by requiring that ri = Ri [34] for a tonic presynaptic train:

τ
dri
dt

= 1− e(−τspike/τ)

1− e−1/(xiτ) − ri (4.8)

where τspike is the spike width measured at Vi = 0 mV. The HH neuron model
has a clear relation between spike rate and input current - f -I curve - , which can
be approximated (see Figure 4.5) by:

xi ' x0
[
max{(Isyn,i + Istim − I0)/nA, 0}

]α
(4.9)

where I0, α and x0 come out from a least squares fit. In this case we can see how
such a model is more effective than linear f -I curves. Moreover, Vi is approximately
constant, such that we can substitute Vrest for it, and the synaptic current becomes:

Isyn,j = −
∑
i

gjisi(Vrest − Vrev) = −
∑
i

ĝjisi (4.10)

where si is the averaged version of Si, and ĝji is a constant. By denoting
g̃ij = ĝij/µA, Ĩ = (Istim − I0)/µA, we get:

xi = x0

[
Ĩ −

∑
j

g̃ijsj

]α
+

(4.11)

where [...]α+ ≡ (max{...,0})α. By inserting (4.11) in (4.8):
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Figure 4.5: f -I curve - i.e. gain function - x of the HH neuron, which is fitted
almost perfectly by (4.9)

τ
dri
dt

= 1− e−τspike/τ

1− e−(x0[Ĩ−
∑

j
g̃ijsj ]α+τ)−1 − ri

' x̃0

[
Ĩ −

∑
j

g̃ijsj

]α
+
τ − ri

where we have employed the truncated Taylor expansion for ex ' 1 +x for small
values of x, and x̃0 = [1− e−τspike/τ ]x0. In the end we get an approximated model
of the form: 

τ dsi
dt

= (ri − κsi)Smax−siSmax

τ dri
dt

= x̃0

[
Ĩ −∑j g̃ijsj

]α
+
τ − ri

(4.12)

The effectiveness of this approximated model can be seen in Figure 4.6, where,
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for non-symmetric gij, after a short transient the three HH neurons (left) fire
sequentially with a fixed peak-to-peak temporal spacing. On the other side, the
three coupled rate neurons (right) fire sequentially with the same peak-to-peak
temporal spacing. From the point of view of rate coding, where the information
content is brought by the frequency of spikes, these two systems are completely
equivalent.

/

Figure 4.6: Left: Aggregated plot for the HH spiking neuronal motif, each color
represent a specific neuron. As you can see, there is a precise sequential switching
which is the effect of the heteroclinic loop; right: Aggregated plot for the rate
model motif, again each color represent a specific neuron. In this case we still have
a sequential switching and, more importantly, we can see that the spike trains are
the same in terms of timing.

A more powerful demonstration of equivalence between the two systems has been
carried out in [34], where they start by considering couplings with an equal strength
gij = gji = g. In this view, g acts as a control parameter for our dynamical system,
in particular for strong competition (g > 30nS), the system shows multistability. In
the phase space, three fixed points - corresponding to a WTA behavior - arise and
the boundaries of the basins of attraction of these attractors are the separatrices of
the saddles. The observed phenomena in the three HH neurons motif are identical
to the ones in the three rate neurons, see Figure 4.7.

As we have previously stated, having symmetric interactions - i.e. gij = gji -
between neurons cannot lead to WLC behavior, and thus we cannot observe an
heteroclinic structure in the phase space. We can introduce asymmetric connections
by specifying two different values for g, for each direction of the synapses - we are
basically considering a directed network now -, g1 and g2. For increasing asymmetry,
at a critical value of the ratio g1/g2 saddles and fixed points merge together, leading
to the appearence of a heteroclinic cycle which presents a characteristic sequential
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Figure 4.7: Top: Bifurcations of the three HH neurons motif for symmetric
reciprocal interaction of increasing strength. Axes correspond to the three synaptic
activation variables S1, S2, S3. Bottom: Bifurcations of the three rate neurons motif
for symmetric reciprocal interaction of increasing strength. Axes correspond to the
three synaptic activation variables s1, s2, s3. Synaptic conductances, as in [34], , (a)
g = 10nS, (b) g = 30nS, (c) g = 50nS, (d) g = 60nS, (e) g = 30nS, (f) g = 40nS,
(g) g = 51.4nS, (h) g = 60nS

switiching activity, as in Figure 4.6.
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Chapter 5

Sequential Spatial Memory

Even though sequential learning and memory have been studied for a long time,
little is known about dynamical principles of learning and memorizing multiple
events with some specific temporal order in neural systems. The Winnerless
Competition principle can be framed as a mechanism for explaining sequential
memory by chaining a series of events. In [37] a two-layer neuronal network, which
works under the guidance of a WLC dynamics, has been proposed for this task.
This specific model, after a learning phase, is able to retrieve a prerecorded sequence
of patterns. The essence of the idea behind this work is that the sequential memory
is encoded in a multidimensional dynamical system with a heteroclinic trajectory
connecting a sequence of saddle points which individually represent a memory - i.e.
a pattern - to be stored. In spatial navigation, each saddle point in the phase space
could correspond to a specific pattern - i.e. a landmark or a target - in the physical
space. All saddle points are connected by a one-dimensional stable heteroclinic
orbit, which guarantees the global stability of this structure.

From a biological perspective, it is well established that the hippocampus plays
a key role in processing the information related to the representation of space. One
of the most spectacular results of this role are the so-called place cells, which fire
whenever an animal is in a certain spatial location. The discovery of place cells lead
to a Nobel prize, in [38] more details on this finding are available. This work led to
a paradigm for spatial memory, named the cognitive map [39], which concentrated
and conditioned several years of experimental research.

Even though this result is definitely well-grounded, our brain might employ
other strategies for spatial navigation at the same time. One way could be the
alternative concept of thinking about a trajectory as a linked collection of stored
episodes, where each episode is made up by a sequence of events which may include
different features of the environment. In this view, each event is represented by the
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activity of a specific hippocampal cell. In this viewpoint we are going to talk about
episodic memory, a framework which is favored by different neurophysiological
findings [40], [41].

5.1 A WLC-Based Model
A dynamical model of sequential spatial memory should be built on the following
facts:

1. There should be a neat separation between neurons that respond to specific
stimuli, i.e. sensory neurons (SNs) and hippocampal cells - biologically they
would correspond to CA1 and CA3 regions -, i.e. principal neurons (PNs).

2. SNs are not connected to each other while PNs are coupled by inhibitory
synapses

3. Synapses between PNs and between SNs and PNs show a reinforcement
learning mechanism named Hebbian long-term potentiation (LTP) [42]

By following these three features here we propose, along [37], a two-layer
dynamical model of sequential spatial memory (SSM) as in Figure 5.1.

Based on this network, we will try to answer the following questions:

• How is a certain event recorded in the structure of such a network?

• What kind of competitive dynamics forces individual Principal Neurons to
fire sequentially?

The first goal is to learn a projection map, the transformation which links the
heightened activity of SNs to the activity of one PN. The second goal is to learn
the temporal sequence of events, which can be done thanks to Hebbian LTP. The
phase space of such a system shows WLC behavior, which guarantees the stability
of learning.

In order to satisfy the first objective, we employ a similar structure to the one
of the normal form projection algorithm (NFPA) [43]. In this model, the dynamics
of the network is framed in terms of the normal form equations which corresponds
to different patterns stored in the system. In [43], Lotka-Volterra equations for
example can be considered as a special set of normal form equations, which are
finally connected to the Fukai & Tanaka model and to the viewpoint of neurons as
competitive systems.
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Figure 5.1: A two-layer network, the top layer is made of Principal Neurons
(PNs), which are connected between each other by inhibitory synapses and projects
their activity into the bottom layer, made of Sensory Neurons (SNs). SNs are not
connected between each other but they only "sense" the environment.

Let us consider a two-layer network of Ns sensory neurons xi and Np principal
neurons ai. We assume that SNs do not have their own dynamics and are slaved
to external stimuli in the learning regime or to PNs in the retrieval regime. In the
learning regime, sensory neurons perceive a set of binary - consisting of 0s and 1s -
stimuli, xi = Ii. Indeed, during the retrieval phase, xi = ∑Np

j=1 Pijaj with P being
the Ns ×Np projection matrix of connections between SNs and PNs. On the other
side PNs are driven by SNs in the learning phase but they also have their own
dynamics due to inhibitory connections. We can write down the equations for the
amplitudes of PNs:

ȧi = ai − ai
Np∑
j=1

Vijaj + αai
Ns∑
j=1

P T
ijxj + ξ(t) (5.1)

where the parameter α controls the learning (α = 1) and retrieval (α = 0)
regimes and ξ(t) represents an external perturbation which is modelled as white
noise extracted from a uniform distribution between 0 and σ = 10−4.

There are two other learning processes which are essential for our model: learning
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the projection matrix P which connects a group of sensory neurons to a single
principal neuron. These sensory neurons represent the pattern we would like to
store on a higher level; learning the competition matrix V which controls the
temporal ordering of the stored events lets the sequential memory work.

The dynamics of the projection matrix is on a slower timescale with respect to
(5.1):

Ṗij = εai(βxi − Pij) (5.2)

where ε = 0.01� 1. For the initialization of P , we assume that all the entries
are nearly identical, Pij = 1 + ηij, where ηij are small perturbations such that∑
j ηij = 0 and < η2

ij >= η2
0 � 1. For V we assume an initial WTA behavior, which

basically means that Vii = 1 and Vij = V0 < 1 for i /= j.

Let us say that we want to memorize a specific pattern A. The sensory neurons
perceive a set of input Ai corresponding to pattern A. Such stimuli make each
of the SNs in one of the following states: excited - Ai = 1 - or inactive - Ai = 0.
PNs are initialized in a fully excited state - ai(0) = ∑

j PijAj. At the end of the
learning phase, only one of the PNs, which corresponds to the maximum ai(0) , will
be active. Since P is initialized randomly, the maximum ai(0) is in turn random.
In (5.2) we can see how Pij’s corresponding to quiescent ai’s do not change. The
result of this procedure is such that the pattern will be recorded in one of the rows
of P , while other rows will not change.

In case we want to store a second pattern B, which is different from A, we
can repeat the same procedure as before. Firstly, we initialize the PNs as ai(0) =∑
j PijBj. Since pattern A is already stored, pattern B will excite the neuron

responsible for A in a weaker manner. Competition will lead to another different
neuron for storing B. This basically means that we can store as many patterns as
PNs.

The competition matrix determines the logical order of patterns. The goal is
to record in V the transition between pattern A and pattern B by modifying
the element VBA. The dynamics of the elements of the competition matrix are
controlled by the following delay differential equation:

V̇ij = εai(t)aj(t− τ)(V1 − Vij) (5.3)
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where V1 < 1 is an asymptotic value. Only the matrix elements corresponding
to ai(t) /= 0 and aj(t− τ) /= 0 will change, and, given the fact that only one PN at
a time is active, only one of the Vij is changing. The result is that an arbitrary
sequence of patterns can be stored and retrieved.

Figure 5.2: PNs amplitudes in the learning phase: patterns - i.e. MNIST
handwritten digits - are shown as sensory stimuli for a fixed amount of time steps
- i.e. 350 timesteps in our case - followed by a null stimulus, i.e. a zero-vector.
Each of the PNs is associated with a specific input. We ensure the birth of a stable
heteroclinic contour by closing the loop with the presentation of the last input
being the same as the first one. In the retrieval phase the plot would be the same,
but with the only difference that by presenting to SNs only the first input, the
system will retrieve the entire sequence.
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Chapter 6

Conclusions

Up to here we have covered all the possible facets of spatial navigation: from
real world data, to descriptive modeling of animal foraging, up until a possible
phenomenological model which is based on neuronal circuits dynamics: the WLC
principle. It is time to close the circle and understand whether there is a relation
between WLC and Levy exploration strategies.

In [44] a concrete effort is made in trying to link WLC and Levy strategies. In
particular, in this work, WLC is proposed as the neuronal codification mechanism
that allows Levy-like searching strategies due to the fact that it is possible to show
multifractality properties in residence times, when the system crosses each saddle
in the phase space. They propose two different ways in order to extract the hidden
multifractality from a rate model system as well as from experimental neuronal
recording data: de facto confirming the validity of the WLC principle in real-world
scenarios. In the end, the Winnerless Competition principle, not only induces the
existence of globally stable dynamical structures, i.e. stable heteroclinic sequences,
but eventually shows multifractality properties, which are relevant to guarantee
the existence of multi-scale phenomena.

6.1 Final Remarks

In this thesis we have presented an itinerary which aims at connecting apparently
distant topics in order to propose a framework for spatial sequential memory. We
have showed how everything relates back to inhibitory synapses and competition
among neurons and we have directly mapped Fukai & Tanaka’s work into the
Winnerless Competition principle by means of reduced neuron model.
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Conclusions

From another perspective, what we have done still presents some limitations.
For example, the system we have considered admits a fully connected principal
neurons layer and it is not yet clear how to deal with multiple populations of
principal neurons, even though some results in this direction are encouraging [45].
Another consideration worth to mention is the fact that the Spatial Sequential
Memory model in chapter 5 works with two separate phases: learning and retrieval.
Such a separation in learning and retrieving memories is not biologically plausible
and it is something that we are going to tackle in the near future.
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Appendix A

Linear Stability (of
Nonlinear Dynamical
Systems)

Let’s consider the dynamics of a system of nonlinear differential equations:

~̇x = ~F (~x) ~x ∈ RN (A.1)

A fixed point ~x0 ∈ RN is a point such that ~F (~x0) = 0. Let’s understand what
happens around a fixed point for infinitesimal perturbations:

~x = ~x0 + ε~z (A.2)
By definition we get:

~̇x0 + ε~̇z = ~F (~x0 + ε~z) (A.3)
which eventually leads, by considering each vector elements and the fact that

~̇x0 = 0, to:

εżi = Fi(~x0) + ε
∂Fi
∂xj

∣∣∣∣∣
~x0

zj + o(ε2) (A.4)

Since Fi(~x0) = 0 we get (first order in ε):

żi = ∂Fi
∂xj

∣∣∣∣∣
~x0

zj = Aijzj (A.5)

where the matrix made up of Aij elements, i.e. A, is nothing but the Jacobian
matrix.
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The linear stability test depends on the real part of A’s eigenvalues λi - i.e.
Re(λi). In fact, we have:

• ~x0 is linearly stable if and only if Re(λi) ≤ 0

• ~x0 is unstable if and only if Re(λi) > 0
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Appendix B

Why May-Leonard?
Carrying Simplex Existence
(Smale’s Construction)

Let’s consider a general model of total competition (more general than the
specific May-Leonard system):

ẋi = xiMi(x) = Fi(x) (B.1)
where Mi is smooth. We pose two hypotheses:

• H1 For all pairs i, j we have ∂Mi

∂xj
< 0 when xi > 0 (total competition);

• H2 There is a constant K such that for each i,Mi(x) < 0 if |x| > K

H1 basically means that, for all i, j if xi > 0:

∂ẋi
∂xj

= xi
∂Mi(x)
∂xj

< 0 (B.2)

i.e. competition for resources. While H2 means that there are finite resources and
thus, there’s an upper bound on population growth.

Smale has been able to show [46] that if our system satisfies (10) and both H1
and H2, its long term dynamics lies on a simplex and obeys ẋ = H(x) on that
simplex, where H is any smooth vector field of our choice.

Here we follow [46] [47] and we show a quick demonstration. Let ∆1 = {x ∈
Rn
≥0 : ||x||1 = 1} be the standard probability simplex with tangent space ∆0 =
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{x ∈ Rn : ∑n
i=1 xi = 0}. Let H0 : ∆1 → ∆0 be a smooth vector field on ∆1 whose

components can be written as H0i(x) = xigi(x) and H : Rn
≥0 → ∆0 any smooth

map which agrees with H0 on ∆1.

Now, let η(s) : R→ R be any smooth function which is 1 in a neighborhood of
1 and 0 if s ≤ 1

2 or s ≥ 3
2 .

For any ε > 0 we define Mi on Rn
≥0 by:

Mi(x) = 1− ||x||1 + εη(||x||1)gi(x) (B.3)

We can check that for each i, j:

∂Mi

∂xj
= −1 + εη′(||x||1)gi + εη(||x||1) ∂gi

∂xj
< 0 (B.4)

for small enough ε. Now we have d||x||1
dt

= ∑n
i=1 ẋi = ||x||1(1 − ||x||1), which is

the logistic equation.
Thus ∆1 is forward invariant and any point in Rn

≥0 \{0} is attracted to ∆1. On
∆1 we have:

Mi(x) = 1− ||x||1 + εη(||x||1)gi(x) = εgi(x) (B.5)

so that the dynamics on the attractor is ẋi = xiεgi(x) = εhi(x) �

A (bounded) totally competitive system with unstable origin has a unique
invariant manifold that attracts the dynamics [48] (i.e. first orthant minus the
origin). In the May-Leonard system, the invariant manifold can be explicitly found,
and all orbits except the origin are attracted to it. Exceptionally, the dynamics on
the simplex, in that case, is canonically Hamiltonian and all orbits are periodic.

Here we consider the same total competition model, but we enforce the hypothesis
set by adding:

• H3 Mi(0) > 0

This last condition makes the origin 0 a repelling steady state. Orbits are
bounded, which implies that the basin of repulsion of 0 in Rn

≥0 is bounded too.
The boundary of the basin of repulsion is called the Carrying Simplex and is
denoted by Σ. From Hirsch [49] we have the following theorem:

Theorem 1 (The Carrying Simplex). Given (10) every trajectory in Rn
≥0

\{0} is asymptotic to one in Σ is a Lipschitz submanifold, everywhere transverse
to all strictly positive directions, and homeomorphic to the probability simplex.
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Given this theorem, totally competitive n-dimensional Lotka-Volterra systems
eventually evolve like n− 1 dimensional systems.

By going back to the May-Leonard system we can understand how Smale’s
Construction turns out to be useful.

B.0.1 Hamiltonian Dynamics (α + β = 2)
Here we show that for this very special case, where α + β = 2, it is possible to
rephrase the May-Leonard system as a canonical Hamiltonian system.

Let’s start by defining a biologically motivated Lyapunov function:

V (x, y, z) = xyz (B.6)

Then

dV

dt
= xyz

(
ẋ

x
+ ẏ

y
+ ż

z

)
= V ((1− x− αy − βz) + (1− βx− y − αz) + (1− αxβy − z))
= V (3− (x+ y + z)− (α + β)(x+ y + z))

= 3V
(

1− (1 + α + β)
3 (x+ y + z)

)
.= 3V (1− (x+ y + z))

Moreover

d(x+ y + z)
dt

= x+ y + z − x2 − y2 − z2 − (α + β)(xy + xz + yz)

= (x+ y + z)(1− (x+ y + z))− (α + β − 2)(xy + xz + yz))
.= (x+ y + z)(1− (x+ y + z))

Thus if (x0, y0, z0) ∈ R3 \(0,0,0) we have that: for t→∞, x(t) +y(t) + z(t)→ 1.

Note that WLC behaviour is guaranteed up until we have α > 1 and β < 1, see
[23].

All orbits end up on the simplex ∆1. On ∆1 we have:
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dV

dt
= 3V (1− (x+ y + z)) = 0

On ∆1 we might eliminate z since here z = 1− x− y:

ẋ = x(1− x− αy − β(1− x− y)) = (α− β)
2 (1− x− 2y)x

ẏ = y(1− βx− y − α(1− x− y)) = −(α− β)
2 (1− 2x− y)y

Moreover:

div(ẋ, ẏ) = (α− β)
2

(
(1− x− 2y)− x

)
− (α− β)

2

(
(1− 2x− y)− y

)

= (α− β)
2 (1− 2x− 2y − 1 + 2x+ 2y)

= 0

Thus, we have a canonical Hamiltonian system with the following Hamiltonian
function:

H(x, y) = (α− β)
2 (1− x− y)xy (B.7)

B.0.2 Hamiltonian Dynamics (α + β > 2)
In the general case, α + β > 2. Let’s declare a new parameter: γ = α + β − 2. So
that now we have:

d(x+ y + z)
dt

= (x+ y + z)(1− (x+ y + z)) + γ(xy + xz + yz))

And, by recovering (22) we have:

dV

dt
= V ((3 + γ)(1− x+ y + z)− γ)

Now we can assume that the products of terms of order xy, yz, xz make a
negligible contribution asymptotically, for large t [24]. In this case, the asymptotic
solution is:
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ln

(
V (t)
V (t0)

)
→ −γ(t− t0)

V (t)→ ke−γ(t) (B.8)

where k is a constant. Note that (24) lies on the plane x+ y + z = 1, but the
product of the 3 populations becomes exponentially small as time goes on. The
system comes ever closer to the lines x+ y = 1, y + z = 1, x+ z = 1, but it never
converges on any single point, because there are no asymptotically stable points
for α, β values in this domain. This means that from an Hamiltonian perspective
we are back in the previous case.
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